
The Born Approximation

In classical mechanics, the scattering cross section σ can be found by carefully
determining the trajectories of the incoming “beam” particles and relating the
scattering angle to the initial impact parameter. In quantum mechanics, there
are no well-defined trajectories, so the procedure for calculating cross sections
changes to one where the ration of incoming and outgoing fluxes to determine
the probability that the scattering occurs. While exact analytic calculations of
the cross section are often not possible, a useful approximation of the elastic
scattering cross section is given by the first term in the Born series:
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where ~q is the momentum transfer, h̄ = h
2π

is Planck’s constant(h =6.63 × 10−34

joule-sec), m is the mass of the scattered particle, and V (~r) is the potential
energy. The derivation of this result is beyond the present discussion, but we
can use it to understand how nuclear form factors are determined.

• a) Use dimensional analysis to show that this expression has the same
dimensions on both sides of the equation.

• b) Assume that V (~r) = Zze2

4πε0

e−µr

r
. To calculate the Fourier transform of

V (r), begin by setting up the coordinates to be used in the integration.
Since the coordinate directions inside the integral can be chosen arbitrar-
ily, choose them so that ~q is in the positive z-direction, and then use
spherical polar coordinates to do the integral. Do the integral over the
azimuthal angle φ′ first.

• c) Next, do the angular integration over θ′.

• d) Finally, do the integration over r by first replacing sin(qr)e−µr =
=(e(iq−µ)r), integrating the complex exponential and then taking the imag-
inary part. d)Show that, in the limit µ → 0, the Born approximation
reproduces the Rutherford scattering cross section.(Note that the magni-
tude of |~q| is the same in both calculations.)

Born Again

The Rutherford scattering cross-section calculation assumes that the nucleus
can be treated as a point charge. To go beyond this approximation, we need
to calculate the electric potential energy between the nucleus and the scattered



particle. Assume that the charge density of the nucleus is given by ρ(~r′), and
the that scattered particle can be treated as a point charge.

• a) Make a sketch of the nucleus(a large sphere), where ~r′ is the vector
from the center of the nucleus to a particular location inside the nucleus.
Draw in the particle to be scattered at a location outside the nucleus and
call the vector that points from the center to the particle ~r. Draw the
vector that points between these two locations. What is it in terms of ~r

and ~r′?

• b) Since the nucleus is not a point, it cannot be treated as a point charge.
We must imagine dividing it into tiny volumes, each of which is small
enough to be thought of as pointlike, and then adding the contribution of
each to the potential energy to get the total. Add the tiny volume d3r′ to
the diagram. What is the charge inside this tiny volume?

• c) Calculate the contribution electric potential energy of the scattered
particle due to the tiny charge located at ~r′.

• d) By integrating over the entire nucleus, show that the potential energy
of the scattered particle is given by
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• e) Write the expression for the Fourier transform of V (~r) in terms of two
three dimensional integrals over ~r and ~r′. By changing variables to ~r − ~r′

in one of the integrals, show that the Fourier transform of V (~r) is the
product of the Fourier transforms of ze

4πε0r
and ρ(~r).

• f) Use this result to write the Born approximation to the cross section for
a non-pointlike nucleus. Compare this to the expression in section 3-4 of
Williams.


