Physics 397

Introduction to Nuclear and Particle Physics

Spring, 2005

Prerequisites:	None	
Instructor:	Charles Benesh	
Phone:	x5265	
e-mail:	cbenesh@wesleyancollege.edu	
Web: Office Hours:	http://www.wesleyancollege.edu/~cbenesh to be announced	
Grading:	44% - 4 Exams 45% - Weekly Homework and Quizzes 11% - Project	
Texts:	Introductory Nuclear Physics , by Kenneth S. Krane	
	Modern Physics for Scientists and Engineers, 2nd Edition, by Taylor, Zafiratos and Dubson.(Optional)	

• Exams: Periodic exams will be given in class, per the attached schedule. The exams will consist of questions similar/related to the homework problems.

There will be four exams given, the last during the scheduled final exam period.

• Lecture Attendance: Regular attendance in class is both expected and recommended. Generally, quizzes are only given when attendance falls below 70%. Therefore, the day you don't show up is more likely to have a quiz.....

- Quizzes: I reserve the right to give unannounced in class quizzes which will count towards the homework portion of your grade. No makeup quizzes will be given.
- Homework: Homework will be due on Fridays, at 5 pm.
- Late Homework: Due to time constraints, I cannot grade more than one late assignment or lab report per student per week, including Finals week.(Note that Makeup Labs are not considered late until one week after the lab is made up.) In particular, this means that only one late assignment will be graded during the last week of classes and Finals Week.
- Student Project:Each student is required to complete a project on a topic that is related to the topic of this course. Projects will have a significant practical component involving the successful completion of an experiment or simulation, and a presentation of results at the end of the semester. The topic and scope of each project is to be determined in consultation with the instructor.

A successful Project will consist of a short(1-2 page) proposal outlining the nature and scope of the project, due three weeks into the semester(10 points, due three weeks into the semester), a progress report(15 points, due at mid-term), a twenty minute final oral presentation of your results(20 points), and a final written report(55 points).

Class Schedule - Physics 397

Aug	14	Early History; Constituents of nuclei READ: Chapter 1
Aug	19 21	Cross Sections Rutherford Scattering - Classical Version READ: Review Class Notes
Aug	26	Review of Quantum Mechanics I - Wave functions, Probability, and The
	28	Review of Quantum Mechanics II - Three Dimensional Problems READ: Chapter 2
Sep	2 4 5	Review of Quantum Mechanics III - Spin and Multi-Particle Systems Review of Quantum mechanics IV = Fermi's Golden rule Project Proposal due READ: Chapter 2
Sep	9 11	The Size and Shape of Nuclei Exam I READ: Chapter 3
Sep	16¿ Liquid Drop M 18	Iodel Semi-Empirical Mass Formula READ: Chapter 3
Sep	23 25	The Deuteron Quantum Mechanical Scattering READ: Chapter 4
Sep Oct	30 2 3	Properties of the Nuclear Force The Shell Model Project Progress Report Due READ: Chapter 4 and 5
Oct	7 9	NO CLASS Exam II Read: Chapter 5

Oct	14 16	More on the Shell Model Collective Excitations Read: Chapter 5
Oct	21 23	Radioactive Decay TBA READ: Chapter 6
Oct	28 30	Quantum Theory of Decays Decay Chains READ: Chapter 6
Nov	4 Energy Loss by 6	Charged Particles in Matter Radiation detectors READ: Chapter 7
Nov	11 13	Counting Statistics Exam III READ: Chapter 7
Nov	18 20	Alpha Particle Decays Theory of Alpha Decay READ: Chapter 8
Nov	25 27	Exam III NO CLASS READ: Chapter 9
Dec	2 4	Beta Decay Project Presentations