Impedance Problem 1

The circuit shown on the right contains a voltage source $V(t)$, a resistor R, and a capacitor C. The voltage source provides an oscillating voltage $V(t)=V_{0} \cos (\omega t)$, which we assume has been on for a long time. By following the steps outlined below, calculate the time
 meter that is connected in parallel with the resistor.

- a) Write the voltage generated by the source as the real part of a complex exponential. Assume that it's amplitude, V_{0} is real.
- b) Combine the complex impedances of the resistor and the capacitor to form the equivalent impedance of the entire circuit.
- c) Calculate the complex current amplitude for the circuit.
- d) Use the current amplitude you calculated in c) to find the complex voltage amplitude of the voltage drop, $V_{0 R}$, across the resistor.
- e) Multiply the voltage amplitude by $e^{i \omega t}$ and take the real part to find $V_{R}(t)$.
- e) Assuming $V_{0}=10 \mathrm{~V}, \omega=1000 \mathrm{rad} / \mathrm{s}, R=1000 \Omega$, and $C=2 \mu \mathrm{~F}$, find the amplitude and phase shift of $V_{R}(t)$.
- f) Make a graph of the amplitude and phase shift of V_{R} vs ω.

Impedance Problem 2

A second cicuit is shown on the right. This time, there is an additional inductor that is wired in parallel to the capacitor. Assuming that V_{0} and R are the same as in Problem 1, and that and $L=0.25 H$, calculate the voltage $V_{R}(t)$ measured across the resistor. What would the answer be if L were twice as large? Interpret your result in terms of the equivalent impedance of the parallel $L-C$ system.

