Driven Problem 1 - The Driven Oscillator

A mass M is attached to a spring with force constant k as shown in the figure. The surface upon which the mass slides is frictionless, but the mass is subject to a frictional force $F_{f}=$ $-b v$ due to air resistance. Initially, the mass is at rest at it's equilibrium point, $x=0$. At
 $t=0$, the mass is subject to a driving force $F_{D}(t)=\beta t$.

- a) Derive the differential equation that describes the mass' position for $t>0$.
- b) The solution of this differential equation has two parts, a transient part $x_{H}(t)$ for which the driving force can be ignored, and a long term solution $x_{p}(t)$. Assuming that the system is critically damped, write down the soultion for $x_{H}(t)$ and show that it is a solution of the differntial equation you derived in a) with $F_{D}(t)$ set to zero.
- c) Solve the differential equation for $x_{p}(t)$.
- d) Apply appropriate boundary conditions at $t=0$ and solve for the full motion $x(t)=x_{H}(t)+x_{p}(t)$ of the mass for $t>0$. Make a graph of $x v s t$, assuming $k=3 \mathrm{~N} / \mathrm{m}$ and $/$ beta $=4 \mathrm{~N} / \mathrm{s}$.

Driven Problem 2 - Just for Kicks

The same oscillator is instead subject to a periodic "kick" by a driving force given by $\mathrm{F}_{D}(t)=\frac{F_{0}}{M} n T<t<\left(n+\frac{1}{2}\right) T$
$=0(n+f r a c 12) T<t<(n+1) T$, where T is the time between successive kicks and n is an integer.

- a) Make a graph of $F_{D}(t)$ vs t. What is its period?
- b) According to Fourier, any periodic function can be written as sum of complex exponentials whose angular frequencies are integer multiples of the frequency of the periodic function, i.e.

$$
\begin{equation*}
F_{D}(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{i n \omega t} \tag{0}
\end{equation*}
$$

with $F_{n}=\frac{2 \pi}{\omega} \int_{0}^{\frac{2 \pi}{\omega}} d t F_{D}(t) e^{i n \omega t}$. Calculate the F_{n} for the periodic kick $F_{D}(t)$. What frequecy ω should you use?

- c) Solve the driven oscillator equation assuming only one of the terms in the Fourier sum is non-zero.(i.e. Assume $F_{D}(t)=F_{n} e^{i n \omega t}$ for some n.
- d) Use the priciple of superposition to solve for the long-term part of the oscillator's motion $x_{p}(t)$. Make a graph of $x_{p}(t)$ vs t for one period of the "kick".

