Coupled Oscillators

- A Two small masses form are attached to the ceiling to form a compound pendulum. The first mass of mass M is attached directly to the ceiling by a string of length ℓ from which it is free to swing. The second mass, of mass $2 M$, is attached to the first by a string of length 3ℓ. The strings are massless.
- a) Draw a picture of this system, denoting the angle between the first string and the vertical by θ_{1}, and the angle between the second string and the vertical as θ_{2}.
- b) In the coordinate system whose origin is at the location where the first string is attached to the ceiling, write the x and y coordinates of each mass in terms of θ_{1} and θ_{2}. Assume that both θ_{1} and θ_{2} are small so that $\sin \theta \approx \theta$ and $\cos \theta \approx 1$ for both angles.
- c) Ask the three questions for each mass. Make the same approximations as in part b to obtain the differential equations that govern the behaviour of the system.
$-\mathrm{d})$ Solve the differential equations in c) by assuming $\theta_{1}(t)=\operatorname{Re}\left(A e^{i \omega t}\right)$ and $\theta_{2}(t)=\operatorname{Re}\left(r A e^{i \omega t}\right)$. What values for ω and r are required for the solution?
- e) Initially , the two masses are held so that the top string is vertical and the lower string is at $\theta_{2}=\theta_{0}$. At $t=0$, the masses are released(from rest). Calculate both angles at time t.
- B A particle of charge $q>0$ and mass m is confined in the x-y plane by a force $\vec{F}_{a p p}=-m \omega_{0}^{2} \vec{r}$, where $\vec{r}=(x, y)$. A magnetic field of strength B is directed in the positive z direction.
- a) Find expressions for the x and y components of the net force on the particle in terms of its position $\vec{r}=(x, y)$ and velocity $\vec{v}=\left(v_{x}, v_{y}\right)$.
- b) Solve the differential equations for the x and y components of the motion.(HINT: Use the same form as the last problem.)
$-\mathrm{c})$ At $t=0$, the particle is released from rest at $\vec{r}=(A, 0)$. Find its position as a function of time.
- d) Use MATLAB or other appropriate software to produce a graph of the charge's trajectory for the case where $q B / m=2 \omega_{0}$.

