Coupled Oscillators

- A Two small masses form are attached to the ceiling to form a compound pendulum. The first mass of mass M is attached directly to the ceiling by a string of length ℓ from which it is free to swing. The second mass, of mass 2M, is attached to the first by a string of length 3ℓ . The strings are massless.
 - a) Draw a picture of this system, denoting the angle between the first string and the vertical by θ_1 , and the angle between the second string and the vertical as θ_2 .
 - b) In the coordinate system whose origin is at the location where the first string is attached to the ceiling, write the x and y coordinates of each mass in terms of θ_1 and θ_2 . Assume that both θ_1 and θ_2 are small so that $\sin \theta \approx \theta$ and $\cos \theta \approx 1$ for both angles.
 - c) Ask the three questions for each mass. Make the same approximations as in part b to obtain the differential equations that govern the behaviour of the system.
 - d) Solve the differential equations in c) by assuming $\theta_1(t) = Re(Ae^{i\omega t})$ and $\theta_2(t) = Re(rAe^{i\omega t})$. What values for ω and r are required for the solution?
 - e) Initially, the two masses are held so that the top string is vertical and the lower string is at $\theta_2 = \theta_0$. At t = 0, the masses are released(from rest). Calculate both angles at time t.
- B A particle of charge q > 0 and mass m is confined in the x-y plane by a force $\vec{F}_{app} = -m\omega_0^2 \vec{r}$, where $\vec{r} = (x, y)$. A magnetic field of strength B is directed in the positive z direction.
 - a) Find expressions for the x and y components of the net force on the particle in terms of its position $\vec{r} = (x, y)$ and velocity $\vec{v} = (v_x, v_y)$.
 - b) Solve the differential equations for the x and y components of the motion.(HINT: Use the same form as the last problem.)
 - c)At t = 0, the particle is released from rest at $\vec{r} = (A, 0)$. Find its position as a function of time.
 - d) Use MATLAB or other appropriate software to produce a graph of the charge's trajectory for the case where $qB/m = 2\omega_0$.