MSP Abulus bichocolatum and Gambler’s Ruin Exercises

POPULATION BIOLOGY AND EVOLUTION SIMULATIONS
"Life is like a box of chocolates"

T. Hanks from Forrest Gump
INTRODUCTION.


Many conceivable experiments in population biology and evolution are too impractical to actualy perform, because they would require prohibitive resources or observation times.  In some cases a reasonable alternative is to use a simulation.  A simulation is designed to mimic some elements of a real system which we think are central to its behavior.  These elements involve initial assumptions, starting conditions, and rules for how the simulation will behave.  The output of the simulation over time then mimics the behavior of the real system.  It is important to remember that simulations are only useful to the very limited extent that their initial assumptions, starting conditions, and behavioral rules are valid. 

SPECIFIC OBJECTIVES.


1.
To gain experience with the central concepts of population biology 


2.
To simulate changes in allele frequencies within a simple population


3.
To use Simpson's Index as an objective measure of the genetic diversity in a 



simulated population


4.  
To learn the five necessary and sufficient conditions for Hardy Weinburg



Equilibrium


5.
To explore the concepts of macroevolution and common descent 
through the use of 



a "Monte-Carlo" computer simulation
MATERIALS. (quantities given are for each table of four students)


4 "fun-pack" bags of plain M&Ms


4 Petri dishes


16 medicine cups


1 small finger bowl


1 pair dice


4 charts:



"MATES"



"PUNNET SQUARE"



"OFFSPRING"



"MATTING LOTTERY"


1 Macintosh computer running the application "Gambler's Ruin"

PART I:   The M&M simulation of microevolution
In today's first exercise we are going to simulate some aspects of population genetics, in order to learn about factors which can decrease genetic diversity.  This is a simple "hardware" simulation which uses M&Ms and medicine cups to represent the virtual organism Abulus bichocolatum.  We will be studying a single gene, called "coat color" which has multiple alternative forms, or alleles.  In our organism, the alleles will be represented by the various colors of the candy coating, namely brown (Br), yellow (Y), red (R), green (G), orange (O), and blue (Bl).  In this simulation we will study how the relative frequencies of these alleles in population gene pools of A. bichocolatum change from generation to generation, given certain conditions which influence the survival and reproduction of this organism. Each of our organisms will have two copies of the coat color gene, and will take the form of a specimen cup containing two appropriately colored M&M candies.  To simplify our simulation further, we will assume that each generation mates, produces offspring of types in exact proportion to Mendelian predictions, then dies.  Our simulated population will be kept at a constant size by using a specified set of rules to cull each offspring population back to the size of the parent population.

A) Variability in allele frequencies in isolated populations
Empty the contents of 4 small "Fun-Size" bags of M&Ms into 4 separate Petri dishes.  Each dish represents an isolated population and the M&Ms which it contains represents the coat color gene pool for that population.  All of the populations from all of the groups collectively constitute the gene pool for the entire A. bichocolatum species.   Have one member of your group close her eyes and randomly "cull" each small gene pool to 16 M&Ms.  Feel free to eat the unfortunate "cullees".  Now tally up the relative numbers of each color of the remaining M&M in each of the four gene pools, as well as for the combined population (totals from the entire class) and enter these allele frequency numbers below:







Population



          Species
allele (color)
1

2

3

4

Total


brown

yellow

red

green

orange

blue












TOTAL

16

16

16

16



D
Questions:


A1. Are the four gene pools identical?  


A2. What accounts for any differences between the gene pools in the relative 



   numbers of each allele?  


A3.  Are some alleles missing entirely from one or more of your small gene pools?  


A4. How does this compare to what you might reasonably expect if a large natural 


       interbreeding population were broken up into one or more small, isolated 


       populations?

Empty the contents of all four of your dishes into the finger bowl.  This will serve as a genetic reserve for the subsequent simulations.

B) Quantifying Genetic Diversity
A useful measure of diversity which is equally applicable to genetic diversity within a population and species diversity within a community, is Simpson's Index of Heterogeneity:





  N


D =  1 / pi2




 i=1

where 
D = Simpson's index of heterogeneity




pi is the proportion of copies of allele i in the gene pool




N = the number of different alleles in the gene pool.

A useful "computational expression" for this index is:

D = (total # of gene copies)2  /  [ (# allele 1)2 + (# allele 2 )2 + . . .   + (# allele  N )2  ] 
Simpson's Index D can theoretically range in value from 1 (no heterogeneity = total homogeneity = only one allele in the gene pool) to ∞ (maximal heterogeneity = gene copies distributed evenly amongst an infinitely large number of alleles).  Calculate the value of the Heterogeneity Index D for each of your small gene pools as well as for the total species.  Enter these numbers in the row marked "D" in the table above.  

Questions:


B1.  How do the heterogeneity values for your small populations compare to that for 



   the "species" as a whole?  


B2.  How does this relate to the concept from your readings of a "genetic bottleneck" 



   which a species or population passes through when it is drastically reduced in 



   numbers?

C)  Changes in allele frequencies due to "genetic drift"
In one of your Petri dishes, create a new gene pool with the following numbers of each allele:


6 Br

3 Y

3 R

2 G

1 Bl

1 O
The first step in this simulation will be to randomly convert this gene pool into a set of individuals, each of which has two copies of the coat color gene.  Cover the Petri dish and shake it to thoroughly to mix up the M&Ms.  Have one member of the group close her eyes and transfer 2 M&Ms into each of 8 specimen cups.  As each specimen cup is filled, place it on the next available square of the "MATES" form.  These 8 cups represent your initial (#0) population of eight individuals.  The particular pair of gene copies which each individual carries is called its genotype.   Look closely at your starting genotypes.  Most of them will have two different alleles, and are therefore heterozygous for the coat color gene.  A few of your starting individuals may have two copies of the same allele (for example two brown M&Ms).  Such individuals are called homozygous.

Notice that your eight individuals are arranged as four mating pairs.  We are going to breed each of these pairs of individuals according to the rules of Mendelian genetics †, which were discovered by the Austrian Benedictine monk Johann "Gregor" Mendel in the late 1800's.  To perform this mating for pair #1 do the following:


1) Transfer the contents of the left-hand cup to the two squares labeled "Parent 1" on 



the "PUNNETT SQUARES" form.  Transfer the contents of the right-hand cup to 



the two squares labeled "Parent 2".  For example, if your mating pair had the 



enotypes Br Y and Br G, then your Punnett square would now look like this:






                  Parent 1






Br


   Y





    Br
Parent 2



        1


       2





    G






       3


      4


2) Place an empty specimen cup on each of the four remaining squares.  These cups 



will represent the offspring of this mating.  In each of the specimen cups place 



two M&Ms of the same color as two parental genes which line up with that 



offspring.  In our example you would now have:






                  Parent 1






Br


   Y





    Br

Br Br


Y Br
Parent 2



        1


      2





    G

Br G


Y G






        3

                 4



3) Transfer your four offspring cups to the four squares of the 


"OFFSPRING" chart, in the row labeled "pair 1".

---------------------------------------------------------------------------------------------------------------------------------------

†  Mendelian genetics actually specifies probabilities for offspring genotypes, rather than fixed numbers .  The use of offspring sets which exactly match expected Mendelian ratios is a simplification for this simulation.


4) 
Clean off your "PUNNETT SQUARE" chart by transferring the four parental M&Ms 


to the reserve bowl or to your mouth.  This corresponds to the death of the parents 


immediately after procreating, a 
common trait among many kinds of real plants and 


animals.

Repeat steps 1-4 for each of the remaining three mating pairs.

You have now doubled your population size; there are twice as many offspring as there were parents.  In order to keep your population size constant, only half of these offspring will be allowed to mate and produce the next generation.  The other half of the offspring will have to die without mating.  For this simulation, we will assume that there is no selection operating and that mating is nonassortative.  To accomplish this you will randomly assign 8 offspring to four mating pairs, and discard the remaining eight offspring according to a random "field of bullets" rule as follows:


1)  Roll two dice.  The numbers which come up on the dice will determine which 



column and row on the "MATING LOTTERY" form you will use to set up the 



next mating generation.  For example, if you rolled a 6 and a 4, you would look at 



the intersection of column 6 and row 4 and find the following:




5
4




2
11




16
3




7 
1


2)  Use this set of numbers to establish your surviving mating pairs for the next 



generation.  In our example you would transfer the offspring from squares 5 and 4 



of the "OFFSPRING" form back to the two "pair 1" squares of your "MATES" 



form, transfer offspring 2 and 11 to the "pair 2" squares, etc.  


3)  After you have transferred all 8 surviving offspring, clean off the "OFFSPRING" 



chart by emptying the unfortunate remainders into the reserve bowl or your 



mouth.

Tally up the frequencies of each allele in your new mating population and enter it into the generation 1 column of the table below.  Has there been any change in gene frequencies?  How can you account for such a change?  Repeat this entire process for 3 more generations, tallying up allele frequencies for the mating survivors in each generation and entering them in this table:







Generation
allele (color)

0

1

2

3

4


brown


6

yellow


3

red



3

green


2

orange


1

blue



1









TOTAL

16

16

16

16

16

Questions:


C1.  Has there been any additional change in allele frequencies? Have any alleles 



   been lost (eliminated)? 


C2.  How do your results compare to those of the other groups?  How 
dependent do 


        you think that your results were on the small size of the population?

In this simulation gene frequencies have changed as a result of genetic drift, which is a random process.  With genetic drift, frequencies of each allele will drift or wander up and down erratically.  However, if the frequency of any allele reaches zero, that allele subsequently disappears from the gene pool forever (unless it is reintroduced by immigration from another population, or by mutation of one allele into another).  The effects of genetic drift tend to become more pronounced as population size decreases.  

Question:


C3. What does this say about the long term effects on genetic diversity of drastically 


        reducing a population's size?

D)  Changes in allele frequencies due to natural selection

In the previous example, individuals were chosen to reproduce or be eliminated entirely at random.  Another way of saying this, is that all of our genotypes resulted in the same phenotype (physical appearance) of the organism.  In this previous simulation, there was no basis for selection to operate to differentially favor or disfavor any particular genotype.


In this next simulation, we will introduce an extreme form of natural selection, by assuming that individuals with one particular genotype (resulting in one particular phenotype) never survive to reproduce.  In our simulation, we will select against initially most common Br Br genotype (cups containing two brown M&Ms).


1)  Start with the same allele frequencies as before:



6 Br


3 Y


3 R


2 G


1 Bl


1 O

2)  Randomly pair these gene copies into four breeding pairs of individuals as before.


3) Mate the original (#0) generation as before to produce 16 offspring, assembled on 



the OFFSPRING chart.


4) Execute a selection process by examining your offspring and killing (removing 



and/or eating) any which have the genotype Br Br.  This may produce some 



number of empty squares on the OFFSPRING chart.

 5) Roll two dice to choose a set of surviving mating pairs on the MATING LOTTERY chart.  Examine the set of survivors you have chosen on this chart.  If 


one or more of the required survivors has already been eliminated in the 

preceding "selection" step, then move to the next set of lottery numbers.  Continue to do this until you arrive at a set of lottery numbers corresponding  entirely to survivors of  the initial selection process.  Use this set of numbers to establish the mating pairs for the next generation.  For example, suppose that offspring #s 7 and 15 had genotype Br Br  and were eliminated.  Suppose you then rolled a 4 and a 3.  In the corresponding lottery grid, you would find #7 as one of the required survivors.  You would then check the next grid square down (4, 4) and find 15 as a required survivor in that square.  Moving one more square down to grid location (4, 5) you would find the following acceptable set of surviving mating pairs:




1
13




12
6




11
2




10
9



Since all of these individuals survived the selection process, you would move 



them to the MATES squares for your next generation.


6)  Repeat this process for four generations, and tally up allele frequencies for each 



generation in the following table:







Generation
allele (color)

0

1

2

3

4


brown


6

yellow


3

red



3

green


2

orange


1

blue



1









TOTAL

16

16

16

16

16

Questions:


D1.  Did you notice any tendency for the Br allele to decrease in frequency in 



   successive generations?  


D2.  Check the results of the other groups as well.  If the frequency of the Br  allele 

  

   decreased, what happened to the frequencies of the other alleles?  



D3.  Why wasn't the Br allele immediately eliminated from the population gene 

 

    pool?

This simulation corresponds to situation where the Br allele is lethal, but recessive.  The effects of a recessive gene are only expressed in the individual's phenotype when both copies of the gene are the same allele, in other words, when the genotype is homozygous for that recessive allele.  In contrast, the effects of a dominant allele are felt when either copy of the gene in an individual is that dominant allele, in other words, when the individual is either homozygous or heterozygous for that allele.  What would have happened to the frequency of the Br allele if all individuals with at least one copy were immediately eliminated?  Are lethal alleles, therefore, more likely to persist from generation to generation in a population if they are dominant or if they are recessive?  Why?

E)
Microevolution
Microevolution is defined as any change in allele frequencies from generation to generation, whether or not it proceeds in a continuous, steady, or predictable direction.  We have seen that both random genetic drift and selection can produce such a change.  If fact, in order for allele frequencies to remain constant in a population and NOT to change from generation to generation, five conditions must all be met.  These are generally called the five conditions for Hardy-Weinburg-Castle Equilibrium:


1) the population must be infinitely large (no genetic drift)


2) mating must be entirely random (no assortative mating)


3) all genotypes must have equal reproductive success (no selection)



4) mutation rates forwards and backwards between any two alleles must be equal 



(no mutation pressure)


5) rates of entry of alleles and exit of alleles by immigration and emigration of 



alleles must be equal (no gene flow)

Since none of these conditions is ever entirely met in a real population, ALL NATURAL POPULATIONS CONTINUALLY EXPERIENCE MICROEVOLUTION.

F)
Genetic Diversity and Species Diversity

As we have seen in this simulation, microevolution can eliminate alleles from a population and, hence, reduce its genetic diversity.  If you were to repeat this simulation for different population sizes, you would discover that this is much more likely to happen if the population is small than if it is large.  Consequently, reductions in the size of a population generally lead, over time,  to a reduction in its genetic diversity.  This reduction in genetic diversity, it turn, reduces the variability in individual genotypes and phenotypes.  This reduction in phenotypic diversity, in turn, makes the population more susceptible to decimation by environmental changes, epidemics, introduction of new predators, introduction of new competing species, etc. 

An addition aspect of genetic diversity is a phenomenon called hybrid vigor.  Simply stated, for many genes which have multiple possible alleles, individuals who are heterozygous tend to have a higher fitness and contribute more offspring to the next generation than do individuals who are homozygous for any of the alternative alleles.  Similarly, individuals who are heterozygous for many of their genes tend to have a higher overall fitness than do individuals who have less heterozygosity in their individual genome (genome = total of all different genes that an individual carries).  As genetic diversity in a population decreases, the average heterozygosity of individuals in the population also generally decreases, reducing the overall fitness of the population.

 In an ecosystem which has been severely reduced in size, most populations within the corresponding community are reduced in size and, hence, genetic diversity.  This reduction in genetic diversity makes each population susceptible to local extinction.  The local extinction of populations, in turn reduces the species diversity of the community.  Finally, as the species diversity of a community decreases, the community generally becomes both less productive and less stable.  If this proceeds far enough, even a small environmental change or insult can cause the complex interactions in the community to catastrophically fail, resulting in a sudden, precipitous drop in community diversity, and exposing the entire community to replacement or elimination.

PART II - The Gambler's Ruin computer simulation of macroevolution
In today's second exercise, we are going to make use of a computer simulation called "Gamber's Ruin".   The expression "gambler's ruin" refers to the fact that, in any game of chance, even if your chances of winning and losing are exactly even, if you participate long enough, you will eventually go broke.  This may seem counterintuitive, but it is true.  For a species, going broke means becoming extinct, and a gambler's ruin model correctly predicts that every species eventually goes extinct.  The best long-term estimate from the fossil record suggest that about 10 ilion years is the average lifespan for a species.

This particular simulation traces the fates of up to 100 initial species and their descendants.  A starting species and its decendants are collectively refered to as a clade.  These clades are traced through up to 500 evolutionary "epochs" or discrete steps.  At each step a species may speciate (turn into two decendant species), become extinct (turn into no decendant species), or simply persist (remain a single species).   If at any point all of the species within a clade become extinct, then the clade itself is extinct and is eliminated from subsequent evolutionary  epochs.  Extinction and speciation are modeled as purely random events, wth fixed probabilities specified at the start of the simulation.  This simulation is very minimalist in that it makes no provisions whatsoever for fitness or natural selection; it in fact provides the "null case" for selection.  The interesting thing about this simulation is the number of interesting phenomena from the history of life on earth that it successfully mimics through purely random processes.

Because the output of this simulation is largely governed by probabilities, no two executions of the simulation will produce exactly the same result, even if the starting conditions are the same.  One run may start with ten clades, proceed through 100 epochs, and end with five surviving clades.  The very next run may start with ten clades under exactly the same specified conditions, and end with no surviving clades after only 10 epochs.  For this reason the best way to use this simulation is to run the simulation repeatedly under identical starting conditions and look at the most common (modal) or central (median) outcome.  Probabilistic simulations which have to be run many times to assess their behavior are called "Monte Carlo" simulations, named after the famous casinos of Monte Carlo.

Simulation 1 - Probability of survival of a single clade
1)
Find the Gambler's Ruin icon on the Macintosh desktop and double-click on it to start the simulation.  This simulation is "line-driven" meaning you have to type in choices rather that just clicking on them.  To proceed with hit the "s" key followed by the return key.  

2)
From the next menu choose P for "parameters".  The computer will then prompt you for the conditions or parameters of the simulation, in each case providing you with the range of acceptable values.  Enter the following values:



number of original species (clades):  
1


number of epochs for simulation: 
5


probability of speciation each epoch: 
.1


probability of extinction each epoch: 
.1

If the values printed out are correct enter y, otherwise enter n, then reenter the values.

3)
What do you think the probility is that your staring clade will survive the five evolutionary steos under these conditions.  Remember that probabilities are numbers between 1 (sure thing) and 0 (no way).  Enter this number in the table below.

3)
Hit return to get back to the main menu.  On the main menu enter e for execute. The computer will rapidly plot an unside-down evolutionary "tree" representing the results of the simulation.  Branch points are speciations, and dead ends are extinctions.  Hitting the return key once produces a page which sumarizes and your results so far in terms of how many clades survived the 5 epochs of evolution (1 or 0).  Hit return several more times.  The screen will cycle between the "main menu", the results of a single new "run" of the simulation and the cumulative results of all of the runs so far.

4)
Accumulate 10 runs by this method.  Now when the "main menu" page comes up, enter m for multiple runs.  to the prompt for the number of runs enter 40.  The program will now rapidly cycle through the simulation 40 more times and stop on the cumulative results page.

5) 
Look closely at this final plot.  For what proportion of the 50 runs did your starting clade survive?  This corrsponds to your measured probability of survival for any single run.  Record this number in the table below.

6)
Hit the return key once. then choose p from main menu.  Enter the following values:



number of original species (clades): 
1


number of epochs for simulation: 
20


probability of speciation each epoch: 
.1


probability of extinction each epoch: 
.1

Notice that these are the same as before except that you are extending each simulation out to 20 epochs or steps.  Again, make a preliminary guess as to the probability of survival of your clade and enter it in the table below.  Now hit return, choose m, specify 50  runs, then hit return again and let the computer cycle through the simulation 50 times.


Did extending each simulation to 50 steps increase or reduce the probability of survival of the original clade?  Enter this value in the table below.

7)
Repeat step 6 three more times, changing "number of epochs" to 80, then 320, after each set of runs, enter the probability of survival in the table below.

Questions:  


1)
How is the probability of survival of your starting clade related to the length 



(number of epochs or steps) of your simulation?


2)
What is the long-term probability of survival of a single clade in this "fair" game 



of speciation and extinction?  In other words, what is the probability of the clade 



surviving an infinite number of steps?


3)
How good a guesser were you?  Did you tend to underestimate or overestimate 


the probability of survival of the clade?

Probability of survival for a single clade




5 epochs
20 epochs
80 epochs
320 epochs


your guess












simulation result











Simulation 2 - Common descent as a chance phenomenon
1)
On the main menu page choose p , then enter the following values:



number of original species (clades):  
10


number of epochs for simulation: 
5


probability of speciation each epoch: 
.1


probability of extinction each epoch: 
.1

Confirm your values the hit return to get back to the main menu.

2)
Before running the simulation, make a guess as to how many of the starting clades are 


likely to survive.  Now enter m, specify 50 runs, and let the computer cycle through the 


simulation 50 times.   Determine the median number of surviving clades.  The median is 


the middle value of the distribution.  Enter this value in the table below.

3)
Repeat step 2 for simulation lengths of 20, 80, and 320 steps or epochs and enter your 


guesses and results in the table below.

Questions:  


1)
How is the number of surviving clades related to the length (number of epochs or 



steps) of your simulation?


2)
What is the long-term probability that all species at the end of a simulation will be 



the descendants of just one of the starting species?


3)
How good a guesser were you?  Did you tend to underestimate or overestimate 


the number of surviving clades?

Number of surviving clades




5 epochs
20 epochs
80 epochs
320 epochs


your guess












simulation result










Punchlines

One of the central aspects of Darwinian evolution is the notion of common descent; that all modern organisms are the surviving descendants of a single common ancestral type of organism.  The "man from monkey" corollary of this idea is so disturbing to many people that they reject the Theory of Natural Selection simply because it predicts or implies the unwelcome conclusion of common descent.  However, as your Gambler's Ruin simulations revealed, common descent does not require natural selection at all.  Common descent is the inevitable result of virtually any long-term process involving speciation and extinction, even if both speciation and extinction are governed entirely by chance.  

A mass extinction is the relatively sudden disappearance of all but a few species and an radiation is the rapid fanning out of a few surviving species into many descendants.  The mass extinction epidsodes known from the fossil record are generally assumed to have had precipitating causes, such as really big asteroid impacts.  Similarly, radiations are generally assumed to be adaptive radiations where the radiating clade is expressing some traits which make them particularly fit.  As the simulations for 320 epochs slowly plotted out, did you see patterns which resembled mass extinctions and  radiations, generated by the purely random processes governing this simulation?  Are insects, mammals, and flowering plants especially fit or especially lucky?  Where the dinosaurs sadly unfit or simply unlucky?

